近日,我院精细化学品教育部工程研究中心绿色与仿生催化研究团队在乳液电催化领域获得重要研究进展,研究结果以“A Pickering-emulsion-droplet-integrated electrode for the continuous-flow electrosynthesis of oximes”为题,发表于《自然》子刊《Nature Synthesis》,博士生张非凡为第一作者,青年教师逯宇轩副教授、杨恒权教授是通讯作者。
Pickering乳液电催化合成环己酮示意图
环己酮是焦化苯下游产品,山西省环己酮的年产能近百万吨。将环己酮转化为环己酮肟(合成纤维与塑料的单体原料),是延伸基焦化苯下游产业链的重要反应,具有重要的经济价值。工业上环己酮肟合成一般采用环己酮-羟胺路线,这条工艺路线存在着爆炸的安全隐患。不同于传统的环己酮-羟胺路线,电催化过程是以水为氢源,利用再生电能驱动氮氧化物还原,原位得到的羟胺物种与环己酮发生偶联,生成环己酮肟。电催化过程不涉及游离态羟胺,不仅提高反应的安全性,还能利用可再生能源驱动化学反应、提高反应效率。然而,电催化过程存在着羟胺中间体与环己酮偶联困难、反应效率低等挑战。针对这些问题,研究团队设计了Pickering乳滴一体化电极,Pickering乳滴界面具有独特油-水界面微环境,存在着结构有序的水分子与非饱和氢键,这种独特的微环境诱导环己酮分子在电催化剂表面上发生倾斜式吸附,促进羟胺物种与环己酮之间偶联,提升环己酮肟选择性和反应效率。在此基础上,研究团队通过导电聚合物将乳滴与电极进行化学交联,构建了乳滴间电荷输运通道,加速电荷转移,在接近工业级电流密度下实现高效环己酮肟连续流动电化学合成。该项研究为发展绿色高效的煤化工过程有一定指导意义,其更广泛的学术价值在于,突破了传统电极材料的设计思路,对解决电催化合成中有机物因溶解度低而难以接近电极的问题具有普遍的意义。
该工作得到了国家自然科学基金委、科技部、山西省科技厅、山西大学文瀛青年学者等项目经费的支持。